Orthogonal orientation control of carbon nanotube growth.

نویسندگان

  • Weiwei Zhou
  • Lei Ding
  • Sungwoo Yang
  • Jie Liu
چکیده

Carbon nanotubes (CNTs) have attracted attention for their remarkable electrical properties and have being explored as one of the best building blocks in nano-electronics. A key challenge to realize such potential is the control of the nanotube growth directions. Even though both vertical growth and controlled horizontal growth of carbon nanotubes have been realized before, the growth of complex nanotube structures with both vertical and horizontal orientation control on the same substrate has never been achieved. Here, we report a method to grow three-dimensional (3D) complex nanotube structures made of vertical nanotube forests and horizontal nanotube arrays on a single substrate and from the same catalyst pattern by an orthogonally directed nanotube growth method using chemical vapor deposition (CVD). More importantly, such a capability represents a major advance in controlled growth of carbon nanotubes. It enables researchers to control the growth directions of nanotubes by simply changing the reaction conditions. The high degree of control represented in these experiments will surely make the fabrication of complex nanotube devices a possibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Carbon Nanotube Orientation and Aggregation on Static Behavior of Functionally Graded Nanocomposite Cylinders

In this paper, the effects of carbon nanotube (CNT) orientation and aggregation on the static behavior of functionally graded nanocomposite cylinders reinforced by CNTs are investigated based on a mesh-free method. The used nanocomposites are made of the straight CNTs that are embedded in an isotropic polymer as matrix. The straight CNTs are oriented, randomly or aligned or local aggregated int...

متن کامل

Structure and magnetic properties of multi-walled carbon nanotubes modified with iron

Related Articles Oscillatory characteristics of carbon nanotubes inside carbon nanotube bundles J. Appl. Phys. 112, 124310 (2012) High-voltage electric-field-induced growth of aligned “cow-nipple-like” submicro-nano carbon isomeric structure via chemical vapor deposition J. Appl. Phys. 112, 114310 (2012) Probing molecular interactions on carbon nanotube surfaces using surface plasmon resonance ...

متن کامل

Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth.

Crossbar arrays of single-wall carbon nanotubes are produced spontaneously in a single step of chemical vapor deposition by simultaneous graphoepitaxy along faceted nanosteps and field-directed growth, perpendicular to each other. The two alignment mechanisms take place selectively on miscut C-plane sapphire and patterned amorphous SiO2 islands, respectively, without mutual interference, produc...

متن کامل

Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire.

We report high-throughput growth of highly aligned single-walled carbon nanotube arrays on a-plane and r-plane sapphire substrates. This is achieved using chemical vapor deposition with ferritin as the catalyst. The nanotubes are aligned normal to the [0001] direction for growth on the a-plane sapphire. They are typically tens of micrometers long, with a narrow diameter distribution of 1.34 +/-...

متن کامل

Theoretical Study of Addition Reaction of Carbene and Zigzag Single-walled Carbon Nanotube

The reaction mechanism between (H2C) and (7, 0), zigzag single-walled carbon nanotubes(ZSWCNTs) on two different orientation of C-C have been studied by semi empirical AM!method. The activation barriers of (H2C) adding to (7, 0) ZSWCNT are computed and compared.The effects of diameters of zigzag SWCNT on their binding energies were studied

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 132 1  شماره 

صفحات  -

تاریخ انتشار 2010